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EFFICIENT ALGORITHMS FOR PERIODIC 
HERMITE SPLINE INTERPOLATION 

G. PLONKA AND M. TASCHE 

ABSTRACT. Periodic Hermite spline interpolants on an equidistant lattice are 
represented by the Bdzier technique as well as by the B-spline method. Circu- 
lant matrices are used to derive new explicit formulas for the periodic Hermite 
splines of degree m and defect r (1 < r < m) . Applying the known de Castel- 
jau algorithm and the de Boor algorithm, respectively, we obtain new efficient 
real algorithms for periodic Hermite spline interpolation. 

0. INTRODUCTION 

This paper deals with periodic Hermite spline interpolation on the equidistant 
lattice 2. Other approaches to this problem use Euler-Frobenius polynomials 
and complex line integrals (see [4-6]) or Euler-Frobenius polynomials and circu- 
lant matrices (see [7, 8]). Similar to [7, 8], we prefer a real-algebraic method for 
periodic Hermite spline interpolation. Contrary to [4-8], we apply a vectorial 
Bezier technique and later a periodic B-spline method in this note. This leads 
to new efficient real algorithms for periodic Hermite spline interpolation. These 
methods are based on the de Casteljau algorithm and the de Boor algorithm, re- 
spectively. Both procedures possess a low arithmetic complexity. Further, one 
can see that the generalized Euler-Frobenius polynomials are very important for 
periodic Hermite spline interpolation. Note that our methods can be extended 
to periodic Hermite spline interpolation with shifted nodes too. 

1. PRELIMINARIES 

In this paper we use standard notations. First we recall some facts concerning 
circulant matrices, which form the background of the considerations in ??3 and 
4 (cf. [2]). 

Let N E N (N > 1) be fixed. For a= (al,., aN)T E RN, let 

[a, a aN1 

T IaN a, 
. aNl I circa (aj-i+i)' - =1 . a j 

a2 a3 ... al 
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denote the associated circulant (N, N)-matrix. Note that the subscripts 
must be calculated modulo N here and in the following. For arbitrary a - 

(ai, ..., aN)?, b= (bl, ... , bN)T RjsN, and a E R, we have 

circa + circbT = circ(a + b)T, 

a circ aT = circ(aa)T, (circ aT)(circ bT) = circ cT 

with C= (Cl, CcN)T and 
N 

Ci Z ajbi-j+I (i = 1, ... , N). 

j=l 

Let ej := (cli, ..., TNLY' (i = 1, ..., N). Let V := circeT denote the funda- 
mental circulant matrix. Then we have 

Vk= circe T (k =1,..,N- 1) VN = VT =V-1 =N- 
k+1 

Note that V is a cyclic shift matrix, i.e., Va = (a2, ..., aN, a, )T. It is clear 
that 

circ aT = al I + a2V + **+ aNVN-1. 

Introducing p () := aI + a2) + * * * + aN)AN- , we see that circ aT = p(V) . Hence 
all circulant (N, N)-matrices commute [2, p. 68]. 

Now we simplify a recent result of [7] and present a shorter proof. 

Theoremi. Let <k<N-l ,andlet)A eC with A<$&1 (j=1,...,k) 
be given. Furthermore, let 

k 

P Gz) := H(A - Ai). 
j=l 

Then p(V) is nonsingular, and its inverse is given by 

p(V)-' = circ(bl, ... , bN), 

where the b, (n = 1, ..., N) are the divided differences 

P - 1) b, [T (I T ) ; ... *** Ad 

Proof. 1. First we show the existence of a polynomial 

q () = bi + b2) + - + bNAN-I1 

with the property p((A)q(.) 1- mod(AN - 1). 
Set 
1.2) Q(AS T) -(iN-1 + AN-2Tr + * * + T N-1)(l TN)-l 

= (z) 1 +iN _l)Q+N_(l _ TN)-1 

Using divided differences with respect to the variable , we get by induction 
on k that 

[(wrl a of; Adegree A?k = P(1)-e 

[( - T) '1( - TN) 1; Zl, *- 7 , Ad = r(A)p(A) 
-l 

where r(A) is a polynomial of degree < k - 1I. Then 

q( ._ := t 
[Q . T) Al5 

. 1A 
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possesses the coefficients (1.1) by (1.2). Hence, it follows from (1.2) that 

(1.3) p(A)q(A) = 1 + (AN- 1)r(A). 

2. By (1.3) we obtain immediately that p(V)q(V) = I, i.e., p(V)- = 

q(V). [ 

Remark. For odd N > 1, k = 1 and AI = -1, it follows from Theorem 1 that 
V + I is nonsingular, and its inverse is 

(V+I)-1= 2circ(1, -, 1,-I,..., 1). 

2. HERMITE SPLINE INTERPOLATION PROBLEM 

Let N, m, r E N with N, m > 1 and r < m be fixed. By sm-N we denote 
the linear space of all N-periodic real functions s E Cm-r(1R) with 

s(j- 1 + t) = pj(t), Pj = Pj+N E Pm 

for all t E [0, 1] and for all j E 2, where Pm denotes the set of all real 
polynomials of degree < m defined on [0, 1]. The elements of SMMJ are 
called N-periodic spline functions of degree m and defect r on the equidistant 
lattice 2. Note that dim Smm = rN. 

We consider the following N-periodic Hermite spline interpolation problem: 
For given data (k) E R (j E 2; k = O, ..., r- 1) with (k)= Y(k+)N we 
wish to find an N-periodic spline function s E Sm-N satisfying the Hermite 
interpolation conditions 

(2.1) s(k)(j) y(k) (j E 2; k = 0, 1), 

(k)-(j _ 0) =(k) (j E 2; k =1 + 1,..., r - 1), 

with 1 := min(r - 1, m - r). 

Remark. In the case 2r < m + 1, we obtain the classical Hermite spline in- 
terpolation problem (2.1). If 2r > m + 1, then (2.1) corresponds to separated 
2-point Hermite interpolation problems, since m - r + 1 (and r, respectively) 
Hermite data on the left (and right, respectively) end point of every subinterval 
[j, j + 1] are prescribed (cf. [8]). 

3. SOLUTION BY THE BtZIER TECHNIQUE 

By an idea of [4], the periodic splines can be represented in a transparent form 
as polynomial vectors such that one can work with cyclic shifts and circulant 
matrices. Obviously, s E SMM-N can be characterized by the polynomial vector 
P := (PN, ... pl )T E pN with the spline conditions (cf. [4-8]) 

(3.1 ) p(k) (0) = Vp(k) ( 1) (k = O.., m - r). 

With the notation y(k) := (Y) ... (k))T E RN (k = 0, ..., r - 1), the 
Hermite interpolation problem (2.1) is equivalent to computing p E PN such 
that the spline conditions (3.1) and the Hermite interpolation conditions 

(3.2) p(k)(1) = y(k) (k = 0,... r - 1) 

are fulfilled (cf. [4-8]). 
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Every p E PpN can be expressed in the form 
M~~~~~ 

(3.3) p = EaiBr 
i=o 

with the Bernstein polynomials 

BTm(t) = (mI )(-t)m-'t' (i = . , m; t E [0, 1]) 

and with vectors ai E RN . The representation (3.3) is called a B&zier polynomial 
of degree m. The vectors a1 are the B&zier coefficients of p (cf. [1]). From 
(3.3) it follows that the kth derivative of p is 

()m-k 
(3.4) p (k) = r ! (Akai)Bm-k (k = 1,. .., m) 

with the kth differences 
k 

/Akai -= E(_ l)k-j (jai+j (i = 0, . .., m - k). 
j=0 

As an immediate consequence of (3.4) we obtain that 

(3.5) p(k)(0)= M kao p(k)()= m! kak 

(rn- k)! '(rn- k)! r- 

By (3.5) it follows from the spline conditions (3.1) and from the Hermite in- 
terpolation conditions (3.2) that 

Akao = VAkam-k (k = 0, ,m - r), 
(3.6) Aka k = 

(r n 
) (k) (k = !, . - 1). 

The linear equations (3.6) are equivalent to the following system: 

(3.7) Z(-1)k}( )a = (m k)!Vy(k) (k = 0, 1), 

k k (rn-k) 
(3.8) ( )k-j ()amj = ! ky(k) (k = ... , r- 1), 

1=0 
M 

and, if 2r < m, 

kk 
(3.9) E(_I)k-j j)(aj- Vam-k+j) = 0 (k = r, ... m-r). 

1=0 

Since the inverse of the lower triangular matrix ((-1 )k-1 (k))l __o is equal to 
the lower triangular matrix (Qk))j k=O the system (3.7) possesses the solution 

(3. 10) aj = V E( k)! j y(k) ( = 0 ... , /). 
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Analogously, the system (3.8) has the solution 

(3. 11 ) amj = Z(_l)k(m- k)()y(k) (j=O,... .,r-). 
k0n M! k/c 

In the case 2r > m + 1, the system (3.9) does not occur and all vectors 
aO ... , amr, am-r+1, ..., am are uniquely determined by (3.10) and (3.11). 
Thus, the periodic Hermite spline interpolation problem under consideration is 
uniquely solvable. If 2r < m, then the system (3.9) can be reduced to a system 
of m + 1 - 2r linear equations in m + 1 - 2r unknown vectors ar, ..., amr 
by substituting the vectors (3.10) and (3.1 1) into (3.9). The solvability of this 
system will be discussed in the following. For practical reasons we consider in 
detail only the cases m < 5. 

Theorem 2. Let N, m, r E N with N, m > 1 and r < m < 5 be given. 
The N-periodic Hermite spline interpolation problem on the equidistant lattice 
Z possesses a unique solution p E pmN of the form (3.3) in the cases (mi, r) = 

(2, 2), (3, 1), (3, 2), (3, 3), (4, 3), (4, 4), (5, 1), (5, 2), (5, 3), (5, 4), 
(5, 5) or (m, r) = (2, 1), (4, 1) with odd N. If 2r > m + 1, then all Bezier 
coefficients of p are given by (3.10) and (3.1 1). If 2r < m, then aO - Vy(O) 
and am = y(?); furthermore, we have in the case: 

(i) (m,r)=(2,1) with odd N: 

a = 2W-1Vy(0) 

with W:=V+I, 
(ii) (m, r) = (3, 1): 

a1 = 2W- 1 V(2V + I)y(?), a2 = 2W- 1 V(V + 21)y(?) 

with W:=V2+4V+I, 
(iii) (m, r) = (4, 1) with odd N: 

a, = 2W-1V(4V2 + 7V + I)y(?) 

a2 = 4W- IV(V2 + 4V + I)y(?), 

a3 = 2W- IV(V2 + 7V + 41)y(?) 

with W := (V2 + 1OV+ I)(V+ I), 
(iv) (m, r) = (5, 1): 

a, = 2W-1V(8V3 + 33V2 + 18V + I)y(?), 

a2 = 4W-1V(2V3 + 15V2 + 12V+ I)y(?), 

a3 = 4W- IV(V3 + 12V2 + 15V + 21)y(?), 

a4 = 2W-IV(V3 + 18V2 + 33V+ 81)y(?) 

with W:=V4+26V3+66V2+26V+I, 
(v) (m, r) = (5, 2): 

a1 - Vy(O) + IVy(l) a2 = W-I(-4V2y(0) + 4V(I - 3V)y(l)) 

a3 = W-1 (-4Vy(O) - 4V(V - 31)y(l)), a4 = y(-) _ I yl 

with W:= V2 -6V + I. 
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Proof. In the cases 2r < m < 5, the solvability of the reduced system (3.9) 
with known vectors ao, ... , am-r, am-r+1, ... , am must be investigated. For 
the sake of simplicity, we discuss here only the case (m, r) = (5, 2). From 
(3. 10) and (3. 1 1 ) it follows that 

ao = Vy(O), al I Vy(?) + VyM 

a4 = Y(O) - ly(l) a5 = Y(O) 

Substituting these results into (3.9), we get the reduced system 

a2 - Va3 = Vy(l), 

(V - 31)a2 + (I - 3V)a3 = -4Vy(O). 

This yields 

Wa2 = -4V2y(O) + 4V(I - 3V)y(l), 

Wa3 = -4Vy(O) - 4V(V - 31)y(l) 

with the circulant (N, N)-matrix W V2 - 6V + I. Since p(A) :2 - 6A + 1 
does not vanish at one of the Nth roots of unity, W = p(V) is nonsingular (see 
[2, p. 89] or Theorem 1) and W-I can be computed with the help of Theo- 
rem 1. El 

The de Casteljau algorithm (cf. [1]) evaluates the vector p(t) E RN (t E 
[O, 1f]) of the form (3.3) step by step for r = 1, . . . , m by convex combinations 

(3.12) a r)(t) (1- t)a r-l)(t) + ta(-1) (t) (i = 0, ..., m - r) 

a(?) (t) ai (i = 0.. ., Im). 

After m steps, (3.12) generates the single vector a(m)(t) = p(t) E RN. The 
de Casteljau algorithm (3.12) works in parallel, is numerically stable [3], and 
requires m(m + 1 )N real multiplications and m(m + 1 )N/2 real additions. 

Together with Theorems 1 and 2, we obtain an efficient algorithm for the 
computation of N-periodic Hermite spline interpolants. If 2r > m + 1, then 
our algorithm requires only O(N) arithmetic operations. If 2r < m, and if 
N is a power of 2, then we can compute the products of the circulant (N, N)- 
matrix W-1 and some N-dimensional vectors (see Theorem 2) with the help 
of the fast Fourier transform, so that our algorithm involves only O(N log2 N) 
arithmetic operations. 

4. SOLUTION BY THE B-SPLINE TECHNIQUE 

In the following we solve the Hermite spline interpolation problem (2.1) by 
periodic B-splines. 

Let N. m, r E N with N, m > 1 and r < m be fixed. By y(k) 

(y~k) .,(k))T E RN (k = 0,..., r - 1) we denote again the given Her- 
mite data. Consider equidistant knots with multiplicity r: 

Xj+rk :=k (kEZ;j=0, ... ,r-1). 
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Assume that xr+rn < N. Let Bk r E Cm-r(11R) denote the normalized B-spline 
of degree m and defect r with the knots Xk, xk+l, ...xk+m+l . Then the 
N-periodic B-spline Pkmr is given by 

00 

Pm'r(X).= E Bkm;7 (X). 
n=-0o 

Note that the N-periodic B-splines 

pm 'rk)= pTm r(x -k) (j = O..., r - l; k = . ., N- 1) 

form a basis of the spline space SMM-N. 

First we consider the case r = 1 of Lagrange spline interpolation for odd m 
(1< m < N- 1). If s E Smm- of the form 

N-1 

s(x) = E ck+l Pom, 1 (X-k) 
k=O 

fulfills the Lagrange interpolation condition (2.1) with r = 1 , then one has 
m-i 

=Bm, 

1 (i + 
1)V'c 

= 

y(0) 
i=O 

with c := (CN, ... CI)T E RN. In terms of the Euler-Frobenius polynomial 
m-i 

(4.1) HmI(A)):= m! EBomg (i+)A'i, 
i=O 

it follows that 
Hm, I (V)c = m!y(?0. 

As we know [ 10], Hm, I possesses only simple negative zeros. Since Hm, I (-1) $ 
0 for odd m, Hm, 1 (V) is nonsingular. Thus, we obtain the solution by 

(4.2) c = m!Hm, I (V)i- y(O). 

Comparing with Theorem 2, we see that (4.2) has a similar structure as the 
corresponding result in ?3. 

Remark. By definition, Hm, I is a monic polynomial of degree m - 1, since we 
have 

Bo l(l) = Bom, l(m)= m) 

For example, we get 

H2, I (A) = A + 1, 

H3,I(A) =A2+4A+ 1, 

H4, 1(A) =23+ 112+ IIA+ I, 

H5,I(A) = A4 + 2623 + 66)2 + 26A + 1. 

For the sake of simplicity, we consider now only the case r = 2 of Hermite 
spline interpolation for odd m = 2n + 1 (1 < n < N - 1). If s E SMm-n2 of the 
form 

N-1 

S(X) = Z(Ck+pmE2(X-k) + dk+prlm,2(X-k)) 
k=O 
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fulfils the Hermite interpolation condition (2.1) with r = 2, then we get 

n-1 

Bm, 
2 
2(i +I1)Vic + Blm 2(i + 1 ) V'd) = Y( ), 

i=O 
n-i 

((Bom, 2), + l )V'c + (Bm 2),(i + l)Vid) = y(l) 
i=O 

with c :=(CN, ... , cl)l E RN and d (dN, ...,d)T RN. Defining the 
generalized Euler-Frobenius polynomial by 

n-1 n-1 

Hm,2(i) 

= (n + 
1l) 

(n!)4 E Bom 
j2(I 

+ 
i)).j 

Bm 2(l + 
i))i 

_ _ _ _ _ _ _ _ _ _ _ _ _ 1 = 

m(Bom'2)'(l + i)Vi Z(Bm 2)'(l + i)A, 

i=O i=O 

we conclude immediately that 

(n + l)(n!)4 n-i 2(I + i)Viy(i)) Hm E~m ((BF')'(l + i)Vly(O) - Bm"( ~l~) 
i=o 

Hm,2(~d -(n + 1)(n!)4 n-i mn 2 l - E (Bm, 2 (l + i)Vly(l) - (Bm 2)'(1 + j)Vjy(0)). 
i=o 

Hence, our periodic Hermite spline interpolation problem is uniquely solvable if 
and only if the circulant matrix Hm, 2(V) is nonsingular. For m = 3, 5, 7, 9, 
Hm,2(V) is nonsingular, since all zeros of Hm,2 are positive and 1 (see [6]). 

Remark. By definition, Hm, 2 is a monic polynomial of degree m - 3, since we 
have 

Bom, 2(1) B`'2(i) Bgm,2(n - 1) Blm2(n - 1) 

(Bmg2),(l) (Blm2)'(l) 1 (Bjmj2)'(n - 1) (B"m2)'(n -1) 
m 

(n + l)(n!)4 

For example, we get 

H3,2(-)= 1, 
H5,2(A) = 1 - 6A + A2, 

H7, 2 ()= 1 - 72) + 26232 - 72- 3 + Z4, 

Hg,2(A) = 1 - 522A + 13839 - 38732)2 + 13839 - 522)2 +t6* 

The zeros of these polynomials are tabulated in [6]. 
Using divided differences and symmetry properties, we can precompute the 

values Bkm 2(I+i) and (B m2)'(l+i) (k = 0, 1; i = 0, ..., n-l). The inverse 
of Hm ,2(V) can be computed by Theorem 1. Once c and d are calculated, 
we obtain the N-periodic Hermite spline with the help of the known de Boor 
algorithm. 
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Note that this B-spline approach can be used also for r > 2. Then the 
generalized Euler-Frobenius polynomial Hmr r is introduced by 

i=O i=O 

Hrn,r(it):= CrnO 
m-1 m-1 

E Bmr( 1)(+ i))i .,, E (Bm7 ,r)(r-l)(1 + i)Ai 
i=O i=O 

with 

C-i 

(Bom, r)(r- 1)(m) ... (BI9r)(r-1)(m) 
Comparing the B&zier technique with the B-spline method, we observe that 

the corresponding coefficients have a similar structure. In both cases, the arith- 
metic complexity is determined mainly by the computation of Hmr (V) - and 
by multiplication of the circulant matrix Hm, r(V) - with a certain vector. Note 
that there exists a linear relationship between the Bezier coefficients and the 
B-spline coefficients. Namely, for r = 1 we get the Bzier coefficients ak 
(k = O ... , m) from the vectors c of B-spline coefficients (see ?4) by 

I k Ok 
ak = ! A T(j)Hmrn4,(V)V(I -V)jc (k = 0 ...,m- ), 

am = ! Hm, I (V)C. 

Conversely, we have 

c = m!HM,I(V)-IVTao = m!HmrI(V) am. 

Finally, we note that our method can be extended to the periodic Hermite spline 
interpolation with nonequidistant nodes, to nonperiodic Hermite spline inter- 
polation, to Hermite spline interpolation with shifted nodes, and to cardinal 
Hermite spline interpolation on an equidistant lattice (see [7]). 

5. GENERALIZED EULER-FROBENIUS POLYNOMIALS 

Assume that m = 2n + 1 > 2r - 1 > 1. In ?4 we defined the general- 
ized Euler-Frobenius polynomials Hmr by means of B-splines. In [6-9], the 
corresponding Euler-Frobenius polynomial is introduced by the following de- 
terminant of order m - r + 1: 

1 (D (.i) 1- 0 ... 0 
1 (r+1) ... (r+1) - 0 0 

Hrnr~):= 1 (rm-r) .m.. (-rnl) 1-). 
(m-r+l) (m-r+1) 

1 (7) ..) (rim-r) 
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Then Hm, r is a monic polynomial of even degree m + 1 - 2r. Now we prove, 
with the help of the theory of eigensplines [9], that Hm ,r = Hm r. 

For the sake of simplicity, we discuss in detail only the case r = 2. Let S~m-2 
denote the linear space of cardinal splines s E Cm-2(11() with sI[j, j + 1] E Pm 
for all j E 2. In terms of the B-splines Bgm 2 and Blm 2 (see ?4), every 
s E SMm-2 can be uniquely represented in the form 

00 00 

(5.1) S( ) ajBo m2(x -j) + E bjB m 2(xj 
j=-oo j=-oo 

with constants aj, bj (i E 2). Let Nm`-2 := IS E SMm-2; s(j) = s'(j) = 0 
(j E 2)}. Then we have (see [9, p. 46]) 

dim Nm-2 = m -3. 

Now s E Nm`-2 (s :$ 0) is called an eigenspline of Sm-r [9, p. 46], if the 
functional equation s(x + 1) = ,us(x) is fulfilled for some constant ,I. We call 
,I the corresponding eigenvalue. In [9, pp. 46-47] it is proved that the m - 3 
zeros of the polynomial Hm, 2 are precisely the eigenvalues of S~m-2. Now we 
show: 

Lemma. The zeros of Hm, 2 are precisely the eigenvalues of Smm-2. 
Proof. If s E Nmn-2 is an eigenspline with the eigenvalue ,I (,I :$ 0), then 
it follows from (5.1) and s(x + 1) = ,us(x) that a+1i = Mtaj and bj+l = Itbj 
(j E 2). Therefore, aj = aol' and bj = bold (j E Z), where laoI + Ibol > 0. 
Thus we find that 

00 00 

(5.2) s(x) = ao E IiBgm 2(x j) +bo E tiBlm 2(Xj) 
j=-Coo j=-Coo 

For x e [n, n + 1], we obtain 
n n 

S(x) =aO 1: IiBom 2(x-j) + bo E ItiBlm2 (X _ j). ~~~~~~~ 
j=O j=O 

From s(n) = s'(n) = 0, it follows that 
n-1 n-1 

bo u giBgm 2(j+ 1) +ao BiB'm 2(j+ 1) = 0, 

(5.3) 
~j=O j=O 

(5.3) n-i n-1 

bo pi (B m, 2)'(j + 1) +ao EIt(Blm 2),(j + 1) =0, 
j=O j=O 

since we have 

Bom 2(n+ 1-x) = Bm 2(x), B m 2(n+ 1-x) =Bgm 2(x), 

Bkm~ (n + 1) = (Brm 2)'(n + 1) = 0 (k = 0, 1). 

From (5.3), we conclude that Hm,2(/() = 0. 
Conversely, if It is a zero of Hm, 2 and if ao, bo is a nontrivial solution of 

(5.3), then the function (5.2) is an eigenspline with the eigenvalue ,I. El 
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Since Hm, 2 and Hm, 2 are monic polynomials of degree m- 3 with the same 
zeros, we get Hm 2 = Hm, 2 . Similarly, it can be shown that Hm, r = Hm, r for 
r> 1. 

Remark. Let m = 2n+ 1 > 2r- I > I . All zeros uj (j = 1, ...,2n-2r+2) of 
Hmesino y as ,rare real, simple, and have the sign of (-1)r. The zeros can be arranged 
as follows: 

0 < II I < ... < I)n-r+II < 1 < I2n-r+21 < K.. < I22n-2r+21I 

where 2122n-2r+2 = .. = 2n-r+ln-r+2 = 1. The value (_l)r is not a zero of 
Hm,r (see [9, p. 47]). 
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